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Abstract. We investigate a non-equilibrium reaction–diffusion model and equivalent
ferromagnetic spin-12 XY spin chain with alternating coupling constant. The exact energy
spectrum and then-point hole correlations are considered with the help of the Jordan–Wigner
fermionization and the interparticle distribution function method. Although the Hamiltonian has
no explicit translational symmetry, the translational invariance is recovered after a long time due
to the diffusion. We see the scaling relations for the concentration and the two-point function
in finite-size analysis.

The study of systems with reaction and diffusion has been a problem attracting much
attention; especially, methods to determine the correlation functions and to observe the
approach to the thermal equilibrium in one-dimensional models have been much developed
recently. One of the recent successes in this field is to obtain the exact correlation functions
including the coagulation term by the so-called interparticle distribution function (IPDF)
method [1, 2]. If we appropriately tune the coupling constants (i.e. the reaction–diffusion
rates) in this approach, the master equation can be solved exactly.

On the other hand, the (partially) antiferromagneticXY spin chain with alternating
coupling constant has been investigated as a toy model to consider the spin-Peierls phase
transition or the Haldane gap. The thermal equilibrium model with alternation has been
studied by some authors [3, 4]. They have obtained the energy spectrum with the mass gap
proportional to the strength of the alternation, the dimer correlation functions and so on.
It has been also shown that the dimerizing process lowers the ground-state energy. From
those results, they have concluded that the uniform antiferromagneticXY chain is unstable
with respect to the distortion.

In this paper, we investigate a thermal non-equilibrium model with alternating coupling
and diffusion. It can be shown that the stochastic model and the ferromagneticXY chain
with alternation are mapped onto each other by linear transformations [2, 5]. The basic
tools to study these systems in this paper are the Jordan–Wigner method and the IPDF
method. By the former method, which can be used in both the ferromagnetic and (partially)
antiferromagnetic regimes, we can diagonalize the Hamiltonian exactly and calculate the
energy spectrum. By means of the latter, which is available only in the ferromagnetic
regime of the model, we obtain the exact forms of the energy spectrum and the correlation
functions. Of course, the overlapped results obtained in the ferromagnetic region by both
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methods are the same. Since in the ferromagnetic case, the ground state occurs when all
the spins are aligned, the time evolution of the correlation functions is our main interest in
this paper.

Hereafter, we investigate a spin-1
2XY model in a magnetic field along thez-axis with

alternation whose Hamiltonian is defined with the alternation parameter1 and the diffusion
parameterη (> 1) by

H =
L∑
i=1

1
2[1+ (−1)i1]Hi,i+1

Hi,i+1 = −η
(
ηsxi s

x
i+1+

1

η
s
y

i s
y

i+1+ szi + szi+1− η −
1

η

)
.

(1)

We assume that the lengthL of the spin chain is an even integer and that periodic boundary
conditions (sL+1 = s1) are imposed.

Let us consider the exact diagonalization of the Hamiltonian (1) by the Jordan–Wigner
transformation [2, 5–7]. It should be mentioned that this method is also available in both the
antiferromagnetic (1 < −1) and ferro-antiferromagnetic coexisting (1 > 1) cases as well
as in the ferromagnetic (|1| < 1) one. Due to alternation, the unique band in the uniform
model is split into two separated bands with an energy gap. Therefore, we introduce two
kinds of fermionsb2n−1 andcn corresponding to spins on the odd and even sites respectively.
The spin operators can be represented by these fermions as

s+2n−1 = b†2n−1 exp

(
iπ

n−1∑
j=1

b
†
2j−1b2j−1+ iπ

n−1∑
j=1

c
†
2j c2j

)
s−2n−1 = (s+2n−1)

†

s+2n = c†2n exp

(
iπ

n∑
j=1

b
†
2j−1b2j−1+ iπ

n−1∑
j=1

c
†
2j c2j

)
s−2n = (s+2n)†

(2)

where the integern runs from 1 toL/2. In terms of the fermionsb and c, the
boundary conditions are given bybL+i = ±bi and cL+i = ±ci depending on whether
N =∑L/2

j=1(b
†
2j−1b2j−1+ c†2j c2j ) is odd or even. Performing the Fourier transformation

b2n−1 =
√

2

L

∑
k

e−
2π ik
L
(2n−1)b̄k c2n =

√
2

L

∑
k

e−
2π ik
L

2nc̄k (3)

and the Bogoliubov transformation

(b̃k, b̃
k, c̃k, c̃

k) = (b̄k, b̄†−k, c̄k, c̄†−k)Sk (4)

whereSk is a certain(4× 4)-matrix, we can rewrite the Hamiltonian (1) as

H =
∑
k

H̃k

H̃k + H̃ L
2−k = λ

(+)
k (b̃

†
kb̃k − b̃k†b̃k)+ λ(−)k (c̃

†
kc̃k − c̃k†c̃k).

(5)

The energy eigenvaluesλ(±)k are given by

λ
(±)
k = −(η2+ 1)± 2η
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where the value of momentumk depends onN as

k = 0, 1, 2, . . . ,
L

2
− 1 for N = odd

k = 1

2
,

1

3
, . . . ,

L

2
− 1

2
for N = even.

(7)

Therefore, the ground state is given by the half-filled state in this basis like(∏
k

b̃
†
k

)(∏
k

c̃
†
k

)
|ṽac〉 with b̃k|ṽac〉 = b̃k|ṽac〉 = c̃k|ṽac〉 = c̃k|ṽac〉 = 0 (8)

and the energy spectrum has a gap 2η1(η + η−1) at 2πk/L ∼ π/2 provided1 6= 0
as is shown for that without the diffusion (i.e. the magnetic field) [3, 4]. Contrary to
the antiferromagnetic case, the energy gap does not appear near the Fermi surface in
the ferromagnetic case. It follows that the ground state energy remains a monotonically
increasing function of the alternation parameter1 even if we add the elastic energy of
distortion to the Hamiltonian. It means that the instability due to the dimerization cannot
be observed in the ferromagnetic case.

On the other hand, as is shown in [2, 5], the spin Hamiltonian (1) can be mapped onto a
stochastic model including coagulation and decoagulation processes by regarding the spin-
up and spin-down state as sites occupied by a particle (denotedA) and empty (denotedφ),
respectively. If theith site is occupied (empty), we labelσi = 1 (0). The stochastic model
to be considered hereafter is defined by the transition rateswαβ(µ, ν) (α, β, µ, ν ∈ Z2) and
arbitrary positive constantsa±. Only the following processes are allowed.

(i) Diffusion

A+ φ ↔ φ + A at the ratea±w11(01) = a±w11(10).

(ii) Coagulation

A+ A→ A+ φ andA+ A→ φ + A at the same ratea±w01(10) = a±w10(01).

(iii) Decoagulation

A+ φ→ A+ A andφ + A→ A+ A at the same ratea±w01(11) = a±w10(11).

The above rates should be interpreted as below. For example, let us assume that theith
and(i+1)th sites are occupied and empty, respectively, and thati is an even (odd) integer.
After an infinitesimal time interval dt , the sites will be occupied byφ andA, respectively,
at the ratea+w10(01) dt (a−w10(01) dt). We restrict the rates further as

w11(10) = w11(01) = w01(10) = w10(01) = 1

w01(11) = w10(11) = η2− 1
(9)

which makes it possible to solve the model exactly by the IPDF method as will be shown
later. Because we can fix the normalization ofa+ anda− asa++a− = 1 by rescaling time,
we put a± = (1± 1)/2 with the same1 as in (1). The basic quantity in the stochastic
model should be the probability distribution functionP(σ ; t), which is the probability to
find the system in the configurationσ = (σ1, . . . , σL) at time t . Defining the Hamiltonian
by

Ĥ =
L∑
j=1

a(−)j Ĥj,j+1 with a(−)odd = a−, a(−)even = a+ (10)

(Ĥi,i+1)
ρiρi+1
σiσi+1

=

wσi−ρi ,σi+1−ρi+1(σi, σi+1) if (ρi, ρi+1) 6= (σi, σi+1)

−
∑

α 6=0,β 6=0

wαβ(σi, σi+1) if (ρi, ρi+1) = (σi, σi+1)
(11)
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with periodic boundary conditionsi ≡ i + L, we can write the master equation of the
probability distribution function in terms of a Schrödinger equation with imaginary time

∂

∂t
P (σ1, . . . , σL; t) = −

L∑
j=1

∑
ρj ,ρj+1=1,0

a(−)j (Ĥj,j+1)
ρj ρj+1
σj σj+1

×P(σ1, . . . , σj−1, ρj , ρj+1, σj+2, . . . , σL; t). (12)

The Hamiltonian given above can be transformed into that of the spin system (1) by the
same mapping proceeded by [2, 5]. Performing a similarity transformationĤ1 = U−1ĤU

with the matrix

U =
(√

η2− 1 0
0 1

)
⊗ · · · ⊗

(√
η2− 1 0

0 1

)
(13)

and a rotational transformationH = R−1Ĥ1R with

R = exp(iθsy1 )⊗ · · · ⊗ exp(iθsyL)
(

tanθ =
√
η2− 1

)
(14)

we obtain the spin Hamiltonian (1).
To calculate the correlation function from the master equation (12), we use the IPDF

method [2, 5, 8–10]. For simplicity, we assume a Gaussian initial condition for generalN

and independent ofM as∑
σ

P (σ ; t = 0)δσM,0 . . . δσM+N−1,0 = pN (15)

wherep (06 p 6 1) is the probability of a site to be empty. If we define the ‘hole length
probability’ (HLP)�(m; t), which is the probability to find a string of empty sites with the
lengthm at time t , by

�(2n+ 1; t) =
∑
σ

P (σ ; t)δσM,0 · · · δσM+2n,0

�(±)(2n; t) =
∑
σ

P (σ ; t)δσM,0 . . . δσM+2n−1,0 (M = even/odd)
(16)

we can easily verify that the above�s do not depend on the starting siteM explicitly
because of the translational invariant initial condition (15). Note that there are two kinds
of the HLPs�(±) for even hole lengths, depending on whether the starting pointM is even
or odd. With these preparations, we can rewrite the master equation simply as

∂

∂t
�(2n− 1; t) = η2[a+�(+)(2n; t)+ a−�(−)(2n; t)] − (1+ η2)�(2n− 1)

+[a+�(+)(2n− 2; t)+ a−�(−)(2n− 2; t)] for 1 6 n 6 L

2
∂

∂t
�(±)(2n; t) = 2a∓[η2�(2n− 1; t)− (1+ η2)�(±)(2n; t)+�(2n+ 1; t)]

for 16 n 6 L

2
− 1.

(17)
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The solution of equation (17) is given by

�(2n− 1; t) =
L/2−1∑
l=1

∑
s=±

A
(s)
l η
−(2n−1)eλ

(s)
l t sin

(
π(2n− 1)

L
l

)
+B2n−1e−(η

2+1)t + ψ(2n− 1)

�(±)(2n; t) =
L/2−1∑
l=1

∑
s=±

A
(s)
l η
−(2n+1) λ

(s)
l + 2a±(η2+ 1)

4a±
eλ

(s)
l t

sin(2πnl/L)

cos(πl/L)

+ 1− a±
1− 2a±

2

η2+ 1
(B2n−1+ η2B2n+1)e

−(η2+1)t + ψ(2n).

(18)

In the above expression,A(±)l andB2n−1 are complicated coefficients depending onL, 1,
p, η and l and the zero-mode function is

ψ(m) = 1

1− η−2L
[(1− pL)η−2m + pL − η−2L]. (19)

The energy spectrumλ(±)l takes the same form as that in (6).
With the above solution, we can investigate the finite-size scaling of physical quantities.

From now on, we setη = 1, i.e. the massless regime. First, we consider the finite-size
correction of the concentrationc(t) = 1− �(1; t) [5]. It is not difficult to ensure that we
can fix a parameterz = 2(1−12)t/L2 finite in the scaling limitL→∞ andt →∞. After
performing a modular transformationz → −1/z, the asymptotic form of the concentration
reads

c(t) ∼
√

1

2π(1−12)t

(
1− 1

32(1−12)t

×
[

1+ 6p + p2

(1− p)2 +13− 2p + 3p2

(1+ p)2
])
+O(t−5/2). (20)

The finite-size analysis for the two-hole probability�(±)(2; t), which is identified with
the probability to find a dimer on a link fora±, can be done similarly. Due to alternation,
�(+)(2; t) and �(−)(2; t) do not coincide for generalt in spite of the initial condition,
�(+)(2; 0) = �(−)(2; 0) = p2. However, because of the diffusion and coagulation, we will
observe�(+)(2;∞) = �(−)(2;∞) = 1, which indicates the recovery of the translational
invariance. For example, let us consider the ratio of the two probabilities�(+)(2; t) and
�(−)(2; t). After a lengthy calculation, its finite-size scaling is shown to be

�(−)(2; t)
�(+)(2; t) ∼ 1+ 1√

2π
((1−12)t)−3/2+O(t−5/2). (21)

As we have seen, both the Jordan–Wigner method and the IPDF approach are available in
theXY model with diffusion and alternation. An energy gap proportional to the strength of
the alternation is observed. We have also seen that the translational invariance is recovered
by the diffusion beginning with a translational invariant initial condition. This recovery,
e.g.�(−)(2; t)/�(+)(2; t), is scaled by the same variablez as that of the concentration.
We have obtained the exponents of the concentration and the two-hole probabilities in the
scaling limitL, t →∞.

We can imagine some extension in this field. First, the coupling constants do not
have to change on every other link in our approaches. That is, it is possible to change the
coupling constant on every third (fourth, etc) site without loss of solvability. In particular, it
would be interesting to consider the relation to the model with randomly changing coupling
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constants [11]. Secondly, contrary to the IPDF method, the Jordan–Wigner method can be
also applied for the (partially) antiferromagnetic alternating model. Although we did not
succeed in finding the corresponding initial condition in the Jordan–Wigner approach so far,
we expect that a parallel discussion can be done.
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